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a b s t r a c t

The crushing response of the pressurized cylindrical tubes under low-speed axial crushing is investigated by
both numerical simulations and theoretical analysis. The internal pressure inside the tubes varies in a wide
range from 0% to 80% of the tube's yield pressure. Numerical simulations with lower internal pressure are
verified by the experiments reported in literatures. It is shown that under axial crushing the tubes with lower
internal pressure deform into the mixture of symmetric mode and unsymmetrical mode. With the increase of
internal pressure, the tube’s deformation under axial crushing is dominated by the symmetric mode. The total
load-carrying capacity of the pressurized structure increases with the internal pressure. However, the load-
carrying capacity of the tube wall itself decreases with the increase of internal pressure once the pressure is
greater than 13% of the yield pressure. This behavior is very different from the foam-filled tubes, for which the
load-carrying capacity of the tube wall is enhanced by the filler inside. Based on the symmetric fold's evolution
process observed from numerical simulations, an analytical model is proposed to establish the expression of
the tube wall's load-carrying capacity in relation to the internal pressure and the tube's size. It is shown that the
tube wall's load-carrying capacity under higher internal pressure decreases with the internal pressure, while it
increases with the cross-sectional area of the tube. By combining the analytical predictions obtained in the
present paper under symmetric mode and that under non-symmetric mode reported in literature, the critical
internal pressure for the transformation between the two deformation modes is estimated. All the analytical
predictions are found to be in good agreements with the numerical simulation results.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

As a classical kind of energy absorption components, tubes have
been widely adopted in aircraft and vehicle structures. During the
accidental impacts, they are crushed axially to absorb energy effectively
while limiting the crushing force [1]. When the cylindrical tubes were
axially compressed, four kinds of deformation modes are observed:
ring mode (symmetric mode), diamond mode (non-symmetric mode),
mixed mode and Euler buckling, as dictated by the tube's length and
the ratio of the tube's diameter to its wall-thickness [2–4]. Alexander
[5] first established an analytical model to predict the average crushing
force of cylindrical tubes deforming with the ring mode. Then his work
was modified in later references [6,7] to improve the accuracy. Bardi
et al. [8] compared numerical crushing responses with those of the
major plastic hinge models for the axisymmetric crushing mode. For
the tubes deforming with diamond mode, the proposed analytical
d Mechanics & Engineering,
zhou 510275, PR China.
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models are not as successful as the ring mode due to the complex
deformation process of the tube wall. Most of such models on the
diamond mode involve the bending of the triangle elements around
the plastic hinge lines. However, it is difficult to theoretically determine
the number of the elements, which needs to be known in advance [9].
Thus, empirical formulas based on experiments are usually employed
in predicting the tubes' average crush force [2].

Cellular materials have been proved to possess effective energy
absorption capability [10–12], thus some researchers focused on
the tubes filled with cellular materials inside. It is shown that the
foam filler beneficially contributes in terms of failure modes,
resulting in a much more stable crushing manner during axial
compression tests [13]. Toksoy and Guden [14] carried out a series
of experiments and found that the foam filling reduced the fold
length and changed the deformation mode of the tube from multi-
lobe mode to axisymmetric mode. Similar phenomena were
observed in the wood-filled tubes [15]. Besides, Duarte [16]
experimentally found that a good interface bonding between the
tube and the filled foam contributed to a more axisymmetric
deformation without distortion, while a lack of interface bonding
resulted in an irregular fold with a certain distortion.
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Fig. 1. Numerical model in simulations.

Nomenclature

E energy dissipated by tube wall
EbDE ,E

s
DE plastic bending energy and stretching energy,

respectively, of arc DE
Eb ,E

s plastic bending energy and stretching energy,
respectively, absorbed by the representative fold per
unit displacement

Ftw crushing force suffered by tube wall
Fp force to balance internal pressure, FP ¼ πR2p
Ftotal total compression force imposed by crushing plate

Ftotal¼FtwþFp
H0, Hf initial and final length of representative fold segment,

respectively.

L length of wall section
Mo fully plastic bending moment per unit length of tube

wall, M0 ¼ Yt2
4

pY yield pressure of tube
R radium of tube
Rcenter distance from centroid of area BDEF to tube's axis
r radius of arc AB, see Fig. 8
t thickness of tube wall
ΔV lateral change in internal volume surrounded by fold

segment during its evolution process
WF work done by crushing force
Wp work done by internal pressure
Y yield stress of tube wall material
α, β, γ, δ, ζ, θ, λ, φ angle of each section, as shown in Fig. 8
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Moreover, the mean crushing load and subsequently the spe-
cific energy absorption of the tubes were found to be enhanced by
the filler [14,15]. The total crush force of the foam-filled tube can
be divided into three parts, i.e., (1) the average crush force of non-
filled tubes, (2) the uniaxial resistance of foam filler, and finally
(3) an interaction effect [17]. Thus, the load-carrying capacity of
the foam-filled tube is higher than the sum of that of the tube and
the foam alone due to the interaction effect between the tube’s
inner wall and the foam filler [13,18].

The pulse buckling of water-filled cylindrical tubes under axial
impact was experimentally and numerically investigated by Lu et al.
[19], in which the water was sealed within the tube. Thus, quite high
internal hydrodynamic pressure occurred inside the tube during the
impact process, and the pressure rapidly increased with the crushing
displacement. Under the combined action of high internal pressure
and axial compression, the thin-walled tubes buckle plastically with
regular and axisymmetric wrinkles. Another similar study by
Paquette and Kyriakides [20] was conducted on the stainless-steel
cylindrical tubes with pressured fluid inside, in which the internal
pressure was controlled as fixed values during the compression
process. The experimental results showed that the internal pressure
lowered the axial stress–strain response of the tubes. Besides, it was
observed that all the pressurized cylinders developed axisymmetric
wrinkling in contrast to the non-axisymmetric buckling modes for
the tubes without internal pressure. It is noticed that all their
experiments were only within small deflections (axial displacement
o5%). If the tubes are used for energy absorption devices, their
behaviors under large plastic deformations need to be investigated.

Zhang and Yu [21] explored the possible use of air-pressurized
thin-walled cylindrical tubes as adaptive energy absorbers and
experimentally investigated those tubes' energy absorption beha-
viors under axial crushing with constant internal pressure. It was
shown that with the increase of internal pressure the deformation
mode of the tube changed from diamond mode with sharp corners
to that with round corners, and finally to ring mode. In diamond
mode, the tubes' mean force increased with internal pressure on
account of two mechanisms: the direct effect of the internal pres-
sure and the interaction between pressurized air and tube wall. The
second mechanism became weaker after the deformation switched
to ring mode. However, no reduced load-carrying capacity of the
tubes caused by internal pressure was observed in their experi-
ments, which was different from the reports of Paquette and Kyr-
iakides [20]. It is noticed that the internal pressure in their studies
[21] was limited in the range from 0% to 30% of the tube’s yield
pressure, and the tubes experienced large plastic deformation. On
the other hand, the tubes’ axial compression reported by Paquette
and Kyriakides [20] was small although the internal pressure
increased up to 75% of the tube's yield pressure. Thus, more work
need to be done in a wide range of internal pressure to clarify the
effect of internal pressure on the force–displacement response of
tubes axially crushed with large plastic deformation.

In the present paper, the crushing response of the pressurized
thin-walled cylindrical tubes under axial impact was numerically
investigated with the internal pressure varying in a wide range
from 0% to 80% of the tube’s yield pressure. Numerical simulations
with lower internal pressure are verified by the experiments
reported by Zhang and Yu [21]. Moreover, an analytical model is
proposed to establish the dependence of the tube’s load-carrying
capacity on the internal pressure and the tube’s own parameters.
2. Numerical simulations

2.1. Numerical model

Numerical simulations are carried out by employing the soft-
ware ANSYS/LS-DYNA. A cylindrical tube without upper and bottom
surfaces is put on a fixed rigid plate, and is axially crushed by
another rigid plate from the top with a constant velocity V¼1 m/s
or V¼10 m/s, as shown in Fig. 1. A constant air-pressure p is applied
on the inner surface of the tube, which is always perpendicular to
the tube's inner surface with a fixed magnitude during the whole
crushing process. The internal pressure p is within the range from
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0% to 80% of the tube’s yield pressure pY, which is defined as

pY ¼
t
R
Y ð1Þ

Two kinds of dimensions for the cylindrical tube are adopted in
simulations. One is the same with that of the tube used in the
experiments by Zhang and Yu [21] with length H¼150 mm, radius
R¼26.5 mm and wall-thickness t¼0.21 mm. The other is similar but
t¼0.17 mm. In experiments [21], the material of tube wall was mild
steel. Tensile tests for the material were reported in Ref. [21], dis-
playing a perfectly plastic behavior with Young’s modulus E¼
200 GPa and yield stress Y¼380 MPa. It is used for the material of
tube wall in numerical simulations with Poisson's ratio μ¼0.3 and
density 7800 kg/m³. The tube wall is meshed with the shell elements
SHELL 163. Through the convergence study, it is found that 0.7 mm
element size with five integration points along the shell thickness
can provide accurate results, which results in 238 elements along the
circumference and 214 elements along the length of the tube.
Surface-to-surface contact is applied between the tube and the two
rigid plates, whilst single surface contact is applied to the tube. The
friction coefficient of all the contacts is set to be 0.1.

2.2. Experimental verification

In the crushing experiments reported by Zhang and Yu [21], the
pressurized thin-walled cylindrical tubes were crushed by a drop
hammer. The crushing velocity was less than 10 m/s and decreased
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Fig. 2. Influence of crushing velocity on the tubes' crushing force.

 experiment p = 0 MPa experiment p

 simulation p  = 0 MPa  simulation p
Fig. 3. Comparison of tubes' deformation between simulations and experiments (t¼0.21
0.7 MPa; (d) simulation p ¼ 0 MPa; (e) simulation p ¼ 0.4 MPa; and (f) simulation p ¼
gradually during the crushing process. In our present study, to
examine the influence of crushing velocity, two cases are simulated
with constant crushing velocity of 1 m/s and 10 m/s, respectively. In
both cases, the internal pressure remains as 1.6 MPa, and the wall-
thickness of the tube is taken as t¼0.21 mm. The impact forces
suffered by the cylindrical tubes are compared for these two cases,
as shown in Fig. 2, indicating that the tubes’ impact force is almost
not affected by the crushing velocity in the range of Vo10 m/s.
Thus, considering the simulation efficiency, the constant crushing
velocity of V¼10 m/s is adopted in the following simulations.

The crushing experiments reported by Zhang and Yu [21] only
employed the internal pressure less than 0.8 MPa, and the results
were used to verify the numerical simulations. The tubes' deforma-
tions obtained by our numerical simulations are depicted in Fig. 3 to
compare with the experimental results reported by Zhang and Yu
[21]. The tubes' deformation seems more asymmetric in experi-
ments. It is resulted by the defects in the cans, while no any defects
are considered in the simulations. Nevertheless, both the experi-
mental and the numerical results show that the tube without inter-
nal pressure deforms with the mixture of symmetric mode and non-
symmetrical mode, as shown in Fig. 3(a) and (d). With the increase of
internal pressure, the lobes' ridges of the non-symmetrical mode
become rounder whilst the number of symmetric rings increases, as
shown in Fig. 3(b) and (e). When the internal pressure increases to
0.7 MPa, the tube's deformation is dominated by the symmetric
mode, i.e. the ring mode, as shown in Fig. 3(c) and (f).

The tubes are sealed on the upper and the bottom surfaces in
the experiments reported by Zhang and Yu [21]. Thus, the total
compression force imposed by the crushing plate Ftotal includes
two parts, i.e., Ftotal¼FtwþFp, where Ftw represents the crushing
force suffered by the tube wall, and Fp is the force to balance the
internal pressure. In numerical simulations, neither upper nor
bottom surface exists for the tubes. By taking FP ¼ πR2p into
account, Fig. 4 compares the total compression force Ftotal of the
numerical and experimental results, showing a good agreement
with each other except the severer undulation in simulations
resulted by ignoring the defects. Thus, our numerical simulations
are verified by the experiments within the pressure range exam-
ined by Zhang and Yu [21]. In the following, we will pay more
attention to the tube’s behavior under higher internal pressure.
  = 0.4 MPa  experiment p  = 0.7 MPa  

 = 0.4 MPa  simulation p  = 0.7 MPa 
mm). (a) Experiment p ¼ 0 MPa; (b) experiment p ¼ 0.4 MPa; (c) experiment p ¼
0.7 MPa.



Fig. 4. Comparison of compression force between experiments [21] and simula-
tions (t¼0.21 mm).
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Fig. 5. Dependence of crushing force on the internal pressure (t¼0.21 mm).
(a) Total crushing force, Ftotal; (b) crushing force suffered by tube wall, Ftw;
(c) increment of Ftw in excess of the case with p¼0 MPa.

L.L. Hu et al. / International Journal of Mechanical Sciences 107 (2016) 126–135 129
2.3. Numerical results

In order to further study the effects of internal pressure on the
mechanical behaviors of cylindrical tubes under axial crushing,
numerical simulations are further carried out for the cases with
higher internal pressures up to 80% of the tubes’ yield pressure.

It is shown in Fig. 4 that the compression force Ftotal undulates
around a certain value during the whole crushing process of the tube,
except for the peak force, which appears at the initial instant of the
crushing. In order to clearly exhibit the dependence of the crushing
force on the internal pressure, the force in the following indicates the
averaged value during the compression process. The average force (or
called the mean crushing force) is one of the important indicators for
the energy absorption capacity of the tubes.

Fig. 5 displays the effect of the internal pressure on both the
mean crushing force suffered from by the tube wall, Ftw, and the
total compression force Ftotal¼FtwþFp. It is shown in Fig. 5(a) that
the total compression force Ftotal increases with the internal pres-
sure, indicating that the internal pressure can enhance the energy
absorption capacity of the tubes, since extra work has to be done by
the crushing plate to overcome the pressure inside the tube.

The dependence of the force applied on tube wall, Ftw, on the
internal pressure, p, is displayed in Figs. 5(b) and (c). The vertical
axis of Fig. 5(c) represents the increment of Ftw for the tubes with
internal pressure, in excess of that without internal pressure. It is
noted in Figs. 5(b) and (c) that the force applied on tube wall, Ftw,
increases with the internal pressure when the internal pressure p is
less than 0.4 MPa (13% of the yield pressure). The force applied on
tube wall with internal pressure p¼0.4 MPa is about 20% higher
than that of the tube without internal pressure. However, once the
internal pressure p40.4 MPa, Ftw decreases with the increase of p,
even lower than that of the tube without internal pressure, e.g. for
the cases of p¼2.0 MPa and p¼2.4 MPa. It is in agreement with the
report on the small deformation of tubes with fluid inside [20], but
is very different from the foam-filled tubes [14,17], for which the
load-carrying capacity and the energy absorption capacity of the
tubes are enhanced by the inside foam filler.

The variation of the tubes’ load-carrying capacity with internal
pressure, as shown in Fig. 5(b) and (c), is related to the tubes'
deformation modes. The deformation modes of the tubes with var-
ious levels of internal pressure are exhibited in Fig. 6 with the tubes'
crushing displacement being 100 mm for all the cases. The numbers
of the deformation folds appeared in the deformed tubes are counted
and listed in Table 1. Fig. 6 and Table 1 reveal that the tube’s defor-
mation is dominated by the non-symmetrical fold when the internal
pressure is less than 0.4 MPa. In these cases, the number of the
symmetric folds increases with the internal pressure, while the
number of non-symmetrical folds remains unchanged until the
internal pressure reaches to 0.4 MPa. Hence, the tube wall’s load-
carrying capacity Ftw increases with internal pressure when
po0.4 MPa as shown in Fig. 5(b) and (c), since more symmetric folds
dissipate more energy. Once the internal pressure p40.4 MPa, the
number of non-symmetrical folds decreases rapidly and they are
replaced by more symmetric folds; this is corresponding to the
decrease of the tube's load-carrying capacity shown in Fig. 5(b) and
(c). When the internal pressure increases to 1.2 MPa, only symmetric
folds appear in the deformed tubes, and then the total number of the
folds decreases with the increase of internal pressure, leading to the
decrease of the tube’s load-carrying capacity.
3. Theoretical analysis

A semi-empirical formula was presented by Zhang and Yu [21]
to predict the mean crushing force of tubes deforming in non-
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p = 1.6 MPa  p = 2.0 MPa  p = 2.4 MPa                

Fig. 6. Deformations of tubes with various internal pressures. (a) p ¼ 0 MPa; (b) p ¼ 0.2 MPa; (c) p ¼ 0.4 MPa; (d) p ¼ 0.6 MPa; (e) p ¼ 0.8 MPa; (f) p ¼ 1.2 MPa; (g) p ¼
1.6 MPa; (h) p ¼ 2.0 MPa; and (i) p ¼ 2.4 MPa.

Table 1
Deformation folds under various internal pressures.

Internal pressure (MPa) Deformation folds

0 3 symmetric folds and 10 unsymmetrical folds
0.2 4 symmetric folds and 10 unsymmetrical folds
0.4 5 symmetric folds and 10 unsymmetrical folds
0.6 8 symmetric folds and 8 unsymmetrical folds
0.8 16 symmetric folds and 2 unsymmetrical folds
1.2 17 symmetric folds
1.6 14 symmetric folds
2.0 12 symmetric folds
2.4 9 symmetric folds
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symmetric mode under lower internal pressures:

Ftotal ¼ 2 min
ð1=2ÞP Ei�P UΔV

δeλ

� �
; ð2Þ

where

X
Ei ¼M0λ A0þA1

R
λ
þA2

λ
t

� �
: ð3Þ

is the total energy dissipations, and

ΔV � 2N
3
R2ðθ� sin θ cos θÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2�S2

q
ð4Þ

is the lateral change in the internal volume surrounded by the fold
segment during its evolution process. δe¼0.82 is stroke coefficient,
and λ is the arc length of a half fold. M0 is the plastic limits of
bending moment. N is the number of lobes along the circumfer-
ential direction. For N¼4 and 5, the coefficients A0, A1, and A2 are
94.8, 26.3, 3.0 and 140.5, 26.3, 4.72, respectively. θ is the half
central angles of a single straight section along the circumference,
and S is the horizontal span of a layer of fold.

For the tubes deforming in symmetric mode under higher
internal pressure, in the following we propose an analytical model
so as to predict the tube's load-carrying capacity and its depen-
dence on the internal pressure applied.

3.1. Evolution of fold

The evolution process of a typical symmetric fold is carefully
tracked in numerical simulations. The evolution of an axial profile of
the typical fold is exhibited in Fig. 7, indicating that the fold’s profile
consists of several sections as marked by ABCDEFG. At the initial
instant of the fold’s formation, all the sections are straight lines and
lie along the undeformed tube wall, as shown in Fig. 7(a). With the
compression of the tube, section DE bends outward as a curve, while
sections CD and EF almost remain as straight lines but become
inclined due to the bending of section DE, as shown in Fig. 7(b). At
the same time, sections AC and FG also bend to curves while remain
smooth connections with the neighbor sections. Once sections CD
and EF approach respective horizontal positions, as shown in Fig. 7
(c), with further compression of the tube, line CD rotates around
point D with sections DE, EF and FG almost holding standstill until
curve AC contacts with section FG at points B and F, as shown in
Figs. 7(d) and (e).By then, a period of the fold’s evolution process is
completed; meanwhile the next fold begins to form and evolve.

An idealized model as shown in Fig. 8 is proposed to describe
the evolution process of a typical fold. At the initial instant, all the
sections within the fold lie along the undeformed tube wall. With
the compression of the tube, as shown in Fig. 8(a), sections A0C, DE
and FG bend to arcs with AA0 still lying along the undeformed tube
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Fig. 7. Evolution process of the typical fold in numerical simulations.
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wall. Line EF is assumed to be always tangential to arcs DE and FG
at points E and F, respectively, while line CD is always tangential to
curves A0C and DE at points C and D, respectively, until lines CD
and EF rotate to the respective horizontal positions, as shown in
Fig. 8(b), which corresponds to Fig. 7(c). At the instant as shown in
Fig. 8(b), section DE is idealized as a semi-circle, while sections A0C
and FG are idealized as quarter circles. The radius of arcs A0C, DE,
and FG are assumed to be the same, r. Thus, the lengths of lines CD
and EF are equal to each other, i.e.,

LCD ¼ LEF ; ð5Þ
where LCD and LEF are the length of lines CD and EF, respectively.

Then with further compression of the tube, sections DE, EF and
FG hold standstill. Line CD rotates about point D while remaining
the tangential connection with arc A’C at point C, until curve ABC
contacts with arc FG at points B and F, indicating the final instant
of the fold’s evolution period, as shown in Fig. 8(c). At the final
instant shown in Fig. 8(c), arc AB is a quarter circle with radius r.
The angle of arc BC is α. Thus, the inclined angle of line CD to the
horizontal direction is also equal to α on account of the tangential
connection between line CD and arc BC. Since arc BC is much
shorter compared to the length of line CD, straight line BD is used
to replace sections CD and BC to simplify the calculation in geo-
metry, as shown in Fig. 8(c). Then the value of α is approximately
calculated as

α¼ arctg
2r
LEF

: ð6Þ
3.2. Load-carrying capacity of tube

Since the tube is made of perfectly plastic material in both
experiments [21] and numerical simulations, rigid, perfectly
plastic material with yield stress Y is considered for the tube wall
in the theoretical analysis. It is also assumed that the bending and
the stretching of the tube wall have no interactions in the yield
criterion. The change in the wall’s length along the tube's axial
direction is ignored. The tube wall suffers from the crushing force,
Ftw, and the internal pressure, p. The work done by them is dis-
sipated by the plastic deformation of the tube wall during the
folds’ evolution process. By focusing on the representative fold
segment ABCDEFG, as shown in Fig. 8, the energy relationship is

WFþWp ¼ Etw ¼ EACþECDþEDEþEEFþEFG; ð7Þ

where WF and Wp are the work done by the crushing force, Ftw,
and the internal pressure, p, respectively, during the evolution
process of the fold. Etw denotes the total energy absorbed by the
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tube wall; EAC, ECD, EDE, EEF and EFG denote the energy dissipated by
sections AC, CD, DE, EF and FG, respectively.

The initial length of the representative fold segment, H0, is

H0 ¼ LCDþLEFþð2πþαÞr; ð8Þ
and the final length, Hf, is

Hf ¼ 2rþ2t: ð9Þ
Thus, the work done by the crushing force during an evolution

period of a symmetric fold is obtained as

WF ¼ FtwðH0�Hf Þ: ð10Þ
The internal pressure is always perpendicular to the tube’s wall.

The work done by the internal pressure to the tube, Wp, can be
expressed by

WP ¼ P UΔV ; ð11Þ
where ΔV is the lateral change in the internal volume surrounded
by the fold segment during its evolution process. It can be calcu-
lated by referring to Fig. 8(c),

ΔV ¼ πr2

2
þrLEF

� �
U2πRcenter ; ð12Þ

where πr2
2 þrLEF

� �
is the area surrounded by sections BD, DE and

EF at the final instant of the fold’s evolution process, see Fig. 8(c);
Rcenter is the distance from the center of area BDEF to the tube’s
axis, written as

Rcenter ¼
2LEF
3 þRþr

� �
U LEF U2r2 þ RþrþLEFþ 4r

3π

	 

Uπr

2

2

h i
πr2
2 þrLEF

	 

¼ Rþrþ4L2EFþ3πLEF rþ4r2

3πrþ6LEF
: ð13Þ

By submitting Eqs. (12) and (13) into Eq. (11), the work done by
the internal pressure to the tube, Wp,is written as:

Wp ¼ pUΔV ¼ 1
3
πpR2t

R
t
r
R

4
LEF
R

� �2

þ6
LEF
R

� �
þð6þ3πÞLEF

R
r
R

"

þ3π
r
R
þð4þ3πÞ r

R

� �2�
: ð14Þ

Arcs AC and FG shown in Fig. 8(c) are bent from the straight wall
with the energy dissipated by both the plastic bending and the
stretching of the tube wall along the circumference. The latter is
resulted from the enlargement of the sections displaced from the
tube's axis. Thus, the energy dissipations by sections AC and FG are

EAC ¼
Z π

2þα

0
2πðRþr�r cos ζÞM0dζ
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Fig. 9. Comparison of Ftw between analytical predictions and numerical results.
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and

EFG ¼
Z π
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respectively, whereM0 ¼ Yt2
4 is the fully plastic bending moment per

unit length of the tube wall.
The straight line EF in Fig. 8(c) comes from the directly falling

down of the vertical tube wall while it always remains tangential
to arcs DE and FG, thus only the stretching energy of the tube wall
need to be considered for the energy dissipated by section EF, i.e.,

EEF ¼ ½πðRþrþLEF Þ2�πðRþrÞ2�2πRLEF �UYt ¼ πYR2t
LEF
R

LEF
R

þ2
r
R

� �
:

ð17Þ
As for line CD, besides the stretching energy of the tube wall, a

plastic hinge at point D will also dissipate energy. Thus, the energy
dissipated by section CD during the fold’s evolution process, ECD, is

ECD ¼ πðRþrþr sin αþRþrþLEF ÞLCD�2πRLCD½ �Yt
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During the evolution process of arc DE, the energy is dissipated
by both the plastic bending of the tube wall and the wall’s
stretching along the circumference. According to Fig. 8(a), the
plastic bending energy of arc DE, EbDE , is

EbDE ¼
Z π

2

0

Z 2γ

0
2π Rþπr

2γ
�πr
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cos γþLEF sin γþπr
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� �

UM0dβdγ:

ð19Þ
The wall’s stretching energy along the circumference, EsDE , can

be calculated based on the final state of the deformed fold as
shown in Fig. 8(c),

EsDE ¼ 2πYrt½
Z π

0
ðRþrþLEFþr sin φÞdφ�πRÞ�: ð20Þ

Hence, the total energy dissipated by arc DE during the evo-
lution process of the fold, EDE, is given by

EDE ¼ EbDEþEsDE ¼ 2πYR2t
� Z π

2

0

t
4R

2γþπ
r
R
�2π

r
R
cos γþ2γ

LEF
R

sin γ
�

þπ
r
R
sin γ
γ

�
dγþ r

R
π
r
R
þπ

LEF
R

þ2
r
R

� ��
ð21Þ

By submitting Eqs. (8)–(11) into Eq. (7), the crushing force
suffered by the tube wall is expressed as:

Ftw ¼ EACþECDþEDEþEEFþEFG�P UΔV

R 2LEF
R þ r

R 2π�2þarctan 2r
R

LEF
R

� �� �
�2t

R

� �: ð22Þ
By substituting the expressions of each item, i.e., Eqs. (14)–(18)
and (21), into the numerator of Eq. (22), it is found that Eq. (22) is
essentially a function of LEF

R and r
R. These two unknowns can be

determined by the minimization of the force, i.e.,

∂Ftw
∂ LEF

R

� � ¼ 0

∂Ftw
∂ r

R

	 
 ¼ 0
:

8>>>><
>>>>:

ð23Þ

Then by substituting the values of LEF
R and r

R, which are obtained
from Eq. (23), into Eqs. (14)–(18) and (21), the crushing force
suffered by the tube wall, Ftw, can be finally obtained according to
Eq. (22). The analytical predictions on Ftw obtained from Eq. (22)
are compared with the numerical results as shown in Fig. 9,
revealing a good agreement between them.

Eq. (22) is workable for the tubes deforming with symmetric
mode similar to Figs. 7 and 8, which is much easier to occur for the
thick-wall tubes. Thus the analytical predications are applicable for
both thin-wall and thick-wall tubes. Based on Eq. (22), the variety
of Ftw with both the wall-thickness ratio, R/t, and the normalized
internal pressure, p/pY, is shown in Fig. 10, in which the tube’s
radius is R¼26.5 mm. It is shown that the load-carrying capacity
of the tube wall decreases with the increase of both R/t and p/pY.

Besides, it is noted that each item in the numerator of Eq. (22) is
proportional to R2t, while the items in the denominator are propor-
tional to R. Thus when t/R is constant, the crushing force suffered by
the tube wall, Ftw, is proportional to Rt, i.e., Ftw linearly increases with
both the tube’s radius, R, and the thickness of tube wall, t. In other
words, Ftw is proportional to the cross-sectional area of the tube.
4. Discussion

4.1. Energy partitioning

In a period of a symmetric fold's evolution process, the total
energy absorbed by the tube wall, Etw, can be calculated based on
Eqs. (7), (15)–(18) and (21), then divided by the reduction of the
fold (Hf -H0), producing the energy absorbed by the tube wall per
unit displacement Etw ¼ Etw=ðHf �H0Þ, and the variation of Etw

with the internal pressure is exhibited as the solid curve in Fig. 11.
It is shown that the total energy absorbed by the tube wall per unit
displacement is not notably affected by the internal pressure,
which can be verified by the numerical simulations, as shown in
Fig. 12. Fig. 12 displays the energy absorbed by the tube wall
during the numerical compression process under various internal
pressures. It is shown that all the curves coincide together,



Fig. 10. Variety of Ftw with both wall-thickness ratio, R/t, and normalized internal
pressure, p/pY (R¼26.5 mm).

Fig. 11. Map of energy partition (t¼0.21 mm).
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Fig. 13. Dependence of bending energy and stretching energy on internal pressure.

Fig. 14. Predictions on the tube wall’s mean crushing force.
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indicating the little influence of the internal pressure on the total
energy absorbed by the tube wall.

The dependence of both the bending energy, Eb , and the
stretching energy, Es , absorbed by the fold per unit displacement
on the internal pressure, p, is respectively plotted in Fig. 13 based

on the analytical formulas. It is shown that the bending energy, Eb ,
decreases with the inner pressure, while the stretching energy, Es ,
increasing. Recalling the tubes' deformation mode observed in
numerical simulations with p41.2 MPa, as shown in Fig. 6 and
summarized in Table 1, with the increase of internal pressure, the
total number of symmetric folds decreases, resulting in less
bending energy being dissipated by the tube wall. However, in the
same time, the total length of the folds increases with the internal
pressure since it is inversely proportional to the folds’ number.
Thus, more stretching energy has to be dissipated by the more
serious expansion of the tube wall along the circumferential
direction. The increased stretching energy is counteracted by the
decreased bending energy, leading to almost no change in the total
energy absorbed by the tube wall under various internal pressures.

The work done by the internal pressure per unit displacement in a
period of the fold's evolution process, Wp ¼Wp=ðHf �H0Þ, can be
calculated by Eqs. (8), (9) and (14), and its dependence on the internal
pressure is plotted as the dotted curve in Fig. 11. It is shown that high
internal pressure does more work when the tube deforms. Since WF

¼ Etw�Wp with Etw almost being unchanged, the work done by the
crushing force per unit displacement,WF , decreases with the increase
of internal pressure, as shown with the shadow portion in Fig. 11.

4.2. Transition from non-symmetric mode to symmetric mode

For the tubes deforming in non-symmetric mode, a semi-
empirical formula was proposed by Zhang and Yu [21] to predict
the dependence of the tube’s mean crushing force on the internal
pressures, which is plotted in Fig. 14 in contrast to the predictions
on that deforming in symmetric mode deduced in the present
paper, i.e., Eq. (22). It is shown that the load-carrying capacity of the
tube wall, Ftw, increases with the internal pressure in the theory
under non-symmetric mode, while it decreases with the internal
pressure under symmetric mode. The two analytical curves inter-
sect at p¼0.48 MPa, indicating the transformation between the two
deformation modes. When po0.48 MPa, the non-symmetric model
represented by Eq. (3) is applicable, while the symmetric model
expressed by Eq. (22) is effective when p40.48 MPa, as shownwith
the solid branch of each curve in Fig. 14.

Recalling the tubes' deformation mode observed in numerical
simulations as summarized in Table 1, it is shown that at
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p¼0.6 MPa the number of symmetric folds and that of the non-
symmetric folds are about to be equal to each other, and this
pressure magnitude is slightly higher than the analytical predic-
tion of p¼0.48 MPa. However, this is qualitatively understandable
by noting the fact that both the two modes synchronously appear
on the tube within the range pr0:8 MPa , as shown in Table 1. By
considering the actual graduate transition between the two
modes, the two “theoretical” curves plotted in Fig. 14 should be
connected with an arc tangential to both of them, as the dotted
curve in the figure. Since the curve’s slope of the non-symmetric
mode is steeper than that of the symmetric mode, the peak point
of the mode transition curve will slightly move to the right com-
pared with the intersection of the two theoretical curves at
p¼0.48 MPa, i.e., more close to the point of p¼0.6 MPa as
observed in the numerical simulation.
5. Conclusion

The novelty of the present study is at revealing how the deforma-
tion modes and the axial load-carrying capacity of pressurized tubes
vary with the internal pressure. It is shown that the tube with lower
internal pressure deforms with mixture of symmetric mode and non-
symmetrical mode. With the increase of internal pressure, the tube’s
deformation is dominated by the symmetric mode. The total load-
carrying capacity of the pressured tube increases with the internal
pressure, since extra work has to be done by the crushing plate to
overcome the internal pressure of the tube. However, if focus on the
load carried by the tube wall alone, it is interesting to reveal that the
internal pressure can enhance the tube wall’s load-carrying capacity
when the wrinkles of the deformed tube are dominated by non-
symmetric mode, while the tube wall's load-carrying capacity decrea-
ses with the increase of the internal pressure once the symmetric
mode dominates the deformed tube under the international pressure
greater than 13% of the yield pressure. It also gives an explanation on
the different results reported in literatures [20,21] about the effect of
the internal pressure on the tubes’ mechanical response.

Based on the evolution process of a typical symmetric fold in the
tube observed in numerical simulations under higher internal pres-
sure, an analytical model is established to predict the tube wall’s
load-carrying capacity as a function of the internal pressure and the
tube’s size. The analytical predictions are found to be in good
agreement with the numerical results. Both the analytical predictions
and the numerical simulations show that the load-carrying capacity
of the tube wall decreases with the internal pressure, while increases
with both the tube's wall thickness and radius.

It should be emphasized that the total energy absorbed by the
tube is almost independent from the internal pressure, although
the tube's load-carrying capacity decreases with the increase of
the internal pressure, which is attributed to the increasing work of
the increasing internal pressure done to the deformed tube.
Moreover, by combining the analytical predictions obtained in the
present paper under symmetric mode and that under non-
symmetric mode reported by Zhang and Yu [21], the critical
internal pressure for the transformation between the two defor-
mation modes is estimated.
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