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A B S T R A C T

We demonstrate a simple and direct method to precisely characterize the optical beam shear angle of polarizing
prisms. Applying nanometer localization analysis for determining the central positions of the two sheared spots
with orthogonal polarizations, we show that it allows for resolving the shear angle beyond the optical diffraction
limit. We use Nomarski prisms to verify our technique and obtain a resolution below 0.5 μrad. Our method
provides a stand-alone characterization of polarizing prisms with a high accuracy for many quantitative imaging
technologies such as differential interference contrast microscopy.

1. Introduction

In many optical imaging systems, transparent prisms are widely used
for refracting light. By means of applications, there are different types
of prisms for deflecting or reflecting light beams. Among them, the
polarizing prism which splits light into components with different polar-
izations, such as the Nomarski prism as a modified Wollaston prism [1],
is the key optical component to generate the phase contrast for the
differential interference contrast (DIC) microscope [2]. Usually, the DIC
microscope is exploited by researchers in material science and biology
to observe the surface microstructure for opaque materials and the unla-
beled structures for transparent materials. Many recent advances in the
development of light imaging systems have utilized the optical beam-
shear characteristic of the prism to quantify the surface roughness [3],
and the microtopography of unlabeled living cells [4]. In some cases,
it is not only used for imaging, but also serves as a functional module
for the dual-focus fluorescence correlation spectroscopy to characterize
the diffusion of molecules at nanomolar concentrations [5,6]. Beyond
observation, these techniques enable the quantitative determination
of the structural parameters and the associated physical properties,
which has broadened the applications of the polarizing prisms towards
multidisciplinary areas by a large margin.

The optical beam-shear angle, as an important attribute of the
polarizing prism, plays a crucial role in the quantitative measurement
for all the aforementioned advanced techniques. However, neither the
prism manufacturers nor the commercial DIC microscope companies
provide the accurate specification of their polarizing prisms. As a part
of the imaging module, the specification of the Nomarski prism mostly
goes with the specific objective lens, by which the beam-shear angle
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may be derived if the amount of lateral shear displacement at the focal
plane is known. In this case, the measurement errors become uncertain
when changing the objective lens or slightly modifying the illumination
path of the microscope.

Precise characterization of the beam-shear angle of a Nomarski
prism is difficult because the amount of shear is usually quite small as
compared to the beam size. The order of magnitude of the beam-shear
angle of a typical Nomarski prism is from 10 to 100 μrad. It means that
the corresponding shear displacement is of submicron scale on the focal
plane. For most DIC microscopes, this value approaches the resolution
limit of the light, which makes the direct spatial measurement im-
possible. Instead, several indirect methods were developed to estimate
the beam-shear displacement from the phase information. One of the
most straightforward method was demonstrated by Duncan et al. when
they were trying to quantify the light scattering and absorption of thin
tissue cells [7]. They used a wedge prism as the reference to calibrate
the beam-shear displacement of the prism for their DIC microscope.
The accuracy of the method depends on the orientation of the placed
wedge, the precision of the wedge dimensions, and the coherence of the
illumination source of their microscope. This approach is not universal
because the measurement requires the whole microscope setting, and
the measured data is sensitive to the coherence of the light source and
fabrication errors of the wedge. The same problem arises for the similar
methods using the dual-focus fluorescence correlation spectroscopy [8].

Some sample-less methods have been developed based on the in-
terference between the light beams with small spatial separation. For
highly overlapped light beams, depending on their coherence, the
interference fringe pattern forms with certain periodicity. The amount
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of beam separation is related to the fringe spacing and wavelength.
Such a relationship gives rise to determine the beam separation from
the characteristics of the measured interference fringes. The accuracy
of this method depends on the beam size and the intensity profile of the
periodic fringes. The whole microscope setup is needed and the mea-
surement errors are closely related to the specifications of objective lens,
and the coherence of the laser source. Another reported interferometry
approach utilizes the phase retardance between the sheared beams to
quantify the amount of shear displacement at a preset shear plane [9].
The precision of the measurement depends on the determination of the
retardance and the position control of the prism along the transverse
direction.

For both sample-wise and sample-less methods, the errors arise from
multiple sources including the optical setup of the microscope and the
moving parts used in the measurement. By far, the quantitative error
analysis for various methods has not been reported. Nor has the bound of
precision been derived. In this work, we proposed a method that directly
determines the spatial positions of the light beams subjected to small
lateral shear, by which we designed a stand-alone optical experiment to
measure the beam-shear angle of polarizing prisms independent of the
full microscope setup. During the data collection, there is no moving
parts in our system. By optical localization analysis, it is possible to
measure the spatial position for each of the light beams respectively. We
demonstrated our method using various Nomarski prisms and performed
a statistical analysis for hundreds of independent measurements to
determine the bound of precision. Finally, we formulated the theoretical
precision of our method, on which a more accurate device can be built.

2. Principle and optical setup

When two light beams of finite sizes are spatially close, it is difficult
to resolve them due to the diffraction effect. Consider a collimated
monochromatic light (e.g. laser) beam of wavelength 𝜆, whose intensity
profile is a Gaussian function, by which we define the beam diameter
𝐷 as the width of the Gaussian profile at the intensity of 1∕𝑒2. After
it passes through a polarizing prism, two orthogonally polarized light
beams are produced and propagate along directions separated by a
small shear angle 𝜀. Restricted by the diffraction effect of light, such
an angle has to be equal or larger than the diffraction angle of the
beam, i.e., 𝜀 ≥ 4𝜆

𝜋𝐷 , so that the spatially sheared beams can be well
resolved. This condition suggests that the beam size of incident light
has to be sufficiently large (𝐷 ≥ 4𝜆

𝜋𝜀 ) in direct observation to determine
the optical beam shear angle. This picture can also be interpreted in
the momentum 𝑘⃗ space. The reciprocal distribution of the laser beam in
the 𝑘⃗ space has the width of 8∕𝐷. For the two spatially sheared beams,
their separation displacement in 𝑘⃗ space is 𝑘𝜀, where 𝑘 = 2𝜋

𝜆 is the
propagation number. The condition to resolve these two modes in the 𝑘⃗
space requires 𝑘𝜀 ≥ 8∕𝐷, that is equivalent to the condition in real space
𝐷 ≥ 4𝜆

𝜋𝜀 . For example, in a typical configuration having the incident
light of wavelength 𝜆 = 400 nm, it is required to have the beam size
𝐷 ≥ 5 cm to resolve an optical beam shear angle 𝜀 = 10 μrad. It is
unrealistic to utilize such a big beam size in experiment to measure the
spatial variables directly since the diameter of most optical components
is much smaller than that.

To solve this problem, we apply the optical localization analysis [10]
to precisely measure the central positions of the two orthogonally
polarized beams in their Fourier 𝑘⃗ space. In this way, it is possible
to resolve the highly interfered light beams even below their diffrac-
tion limit because the two light beams do not overlap at all in the
𝑘⃗−polarization (𝑃 ) joint space. The localization method has been used
for single-molecule tracking [11] and super-resolution fluorescence op-
tical microscopy [12,13]. Here we localize the position of an individual
beam with respect to polarization so that the diffraction effect can be
completely eliminated despite of the spatial closeness of the two light
beams.

Fig. 1. Schematic of the optical setup for measuring the shear angle of a Nomarski prism.
A linearly polarized and collimated laser Gaussian beam with a diameter 𝐷 is incident
on the Nomarski prism. After passing the prism, two orthogonally polarized (𝑃 + and 𝑃 −)
components are split by a shear angle 𝜀, and focused by a lens on its front focal plane. The
half-wave plate (HWP) is used to rotate the linear polarization of the input light beam.

Fig. 2. Intensity profiles with respect to different polarizations passing through the Nikon
40×II Nomarski prism and imaged at the focal plane of the lens. (a) the superposition
𝐼+(𝑥, 𝑦) + 𝐼−(𝑥, 𝑦) with polarization (𝑃 + + 𝑃 −)∕

√

2. (b) 𝐼+(𝑥, 𝑦) with polarization 𝑃 +. (c)
𝐼−(𝑥, 𝑦) with polarization 𝑃 −. (𝑥+ , 𝑦+) and (𝑥− , 𝑦−) are the central positions. Δ𝑦 = |𝑦+ − 𝑦−|
denotes the spatial separation in the y direction.

We use the Nomarski prism as an example to illustrate the working
principle in our measurement platform. The optical setup for measuring
the beam-shear angle consists of a half-wave plate (HWP) and a lens
with focal length 𝑓 shown in Fig. 1. A linearly polarized and collimated
laser beam (𝜆 = 647 nm, 𝐷 = 3.56 mm) passes though the HWP and
incidents into the Nomarski prism. The HWP is used to rotate the linear
polarization of the input light beam. The polarization of light before
entering the prism is

𝑃 = cos 𝛼𝑃+ + sin 𝛼𝑃−, (1)

where 𝑃+ and 𝑃− denote two orthogonal polarization vectors. After the
light passing through the prism, the light beam with 𝑃+ is relatively
sheared from the beam with 𝑃− by an angle 𝜀. We used the HWP to
tune the value 𝛼 of the incident beam so that the magnitude of either
𝑃+ or 𝑃− will vanish in each of the independent data acquisition steps.
The outgoing light beams from the prism (i.e. the red beam with 𝑃+

and the blue beam with 𝑃−) are focused by the lens with a focal length
𝑓 = 15 cm onto its front focal plane, which is equivalent to be viewed
as the Fourier transform of the light to the momentum space.

The distribution of intensity profile carrying a single mode of
polarization at the Fourier plane is also Gaussian, which is collected
by a Nickon DS-Fi3 CCD camera with pixel size 2.4 μm × 2.4 μm. The
shear displacement Δ (marked in Fig. 1), defined as the spatial distance
between the central positions of the two intensity profiles, is obtained
as

Δ = 𝑓𝜀. (2)

The size (1∕𝑒2 diameter) of each intensity profile on the Fourier plane
is

𝑑 =
4𝜆𝑓
𝜋𝐷

. (3)
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Fig. 3. Variation of the center of mass (𝑥𝑐 , 𝑦𝑐 ) of the intensity profile when tuning the
angle of the half-wave plate (HWP) fast axis.

If the two spots are imaged simultaneously, the criterion to resolve
them is Δ ≥ 𝑑, which is limited by the diffraction effect. In order to
separate the two beams onto two different imaging frames, we tune
the orientation of HWP so that the polarization state of the incident
beam is in a singular mode at different temporal steps. Fig. 2 shows the
images of intensity profiles of the refracted light beams on the Fourier
plane after passing through a Nikon 40×II Nomarski prism. When both
𝑃+ and 𝑃− are present, the intensity profile is the superposition of
two Gaussian beams as shown in Fig. 2(a). In this case, the spatial
separation between them is too small to be resolved. At 𝛼 = 0, only
the light polarized along 𝑃+ is present. We acquired the corresponding
image showing the intensity 𝐼+(𝑥, 𝑦) in Fig. 2(b). At 𝛼 = 𝜋∕2, only the
light polarized along 𝑃− is present, of which the intensity is 𝐼−(𝑥, 𝑦)
shown in Fig. 2(c). Note that both 𝐼+ and 𝐼− are Gaussian but their
superposition is not, which is shown in Fig. 2(a). Compared with the
intensity profile of the simultaneous spatial measurement of the beams
on the focal plane, the independent intensity profile consisting of either
𝐼+(𝑥, 𝑦) or 𝐼−(𝑥, 𝑦) makes it possible to resolve the central positions of
the highly overlapped intensity spots.

The angular alignment of the HWP fast axis plays an important role
in the determination of the ratio of 𝐼+(𝑥, 𝑦) and 𝐼−(𝑥, 𝑦). When the angle
of the HWP is set to be 𝜑, the intensity profile after passing through the
prism can be considered as the superposition of two Gaussian beams,
i.e. 𝐼(𝑥, 𝑦;𝜑). We define the center of mass of the intensity at 𝜑 as

(𝑥𝑐𝜑, 𝑦
𝑐
𝜑) = 𝐼∗𝜑(∫R2

𝑥𝐼𝑑𝑥𝑑𝑦,∫R2
𝑦𝐼𝑑𝑥𝑑𝑦) (4)

where 𝐼∗𝜑 = (∫R2 𝐼𝑑𝑥𝑑𝑦)−1. As tuning the angle of the HWP, the center of
mass in Eq. (4) varies periodically between (𝑥𝑐min, 𝑦

𝑐
min) and (𝑥𝑐max, 𝑦

𝑐
max)

as illustrated in Fig. 3. The finest angular scale of our HWP is 2◦ (∼0.035
rad). We chose the angles 𝜑1 = 334◦ and 𝜑2 = 379◦ for each of the data
acquisition steps during the optical localization analysis. Physically,
rotating the half-wave plate from 𝜑1 to 𝜑2 causes the polarization of
the incident light switching completely from 𝑃+ to 𝑃−.

The intensity profiles 𝐼+(𝑥, 𝑦) and 𝐼−(𝑥, 𝑦) corresponds to the out-
going beams with polarization 𝑃+ and 𝑃− after passing through the
polarizing prism. They are fitted by the following two-dimensional
Gaussian functions

𝑔±(𝑥, 𝑦) = 𝐼±0 exp
[

−
(𝑥 − 𝑥±)2 + (𝑦 − 𝑦±)2

2(𝜎±)2
]

+ 𝐼±𝑏 , (5)

where the superscript ± denotes the polarization state of the light,
and 𝐼±0 , (𝑥±, 𝑦±), 𝜎± and 𝐼±𝑏 are the fitting parameters. The spatial
localization with respect to polarization allows for the determination

Fig. 4. Statistical distribution of the central positions (𝑥+𝑖 , 𝑦
+
𝑖 ) and (𝑥−𝑖 , 𝑦

−
𝑖 ) obtained from

localization analysis.

of the central positions of the two modes in the 𝑘⃗ – 𝑃 joint space.
The central position of each of the intensity spots is represented by the
fitting parameters (𝑥+, 𝑦+) or (𝑥−, 𝑦−) from Eq. (5). The optical shear
displacement of the two modes is determined as Δ =

√

Δ2
𝑥 + Δ2

𝑦 where
Δ𝑥 = |𝑥+ − 𝑥−| and Δ𝑦 = |𝑦+ − 𝑦−|. From Eq. (2) the beam-shear angle
is given by

𝜀 = Δ
𝑓
. (6)

3. Results

We demonstrate our technique by applying the localization method
to the Nikon 40×II Nomarski prism. As shown in Figs. 2(b) and (c),
the intensity profiles 𝐼+(𝑥, 𝑦) and 𝐼−(𝑥, 𝑦) of the two Gaussian spots are
acquired independently with different polarizations. These two highly
overlapped light beams are thus completely isolated in the 𝑘⃗ − 𝑃 joint
space.

Following the localization method described in Section 2, we obtain
the shear displacements in 𝑥 and 𝑦 directions Δ𝑥 = 0.670 ± 0.048 μm,
Δ𝑦 = 8.815±0.049 μm, and the total shear displacement Δ =

√

Δ2
𝑥 + Δ2

𝑦 =
8.841±0.049 μm, where the uncertainties come from the fitting standard
errors of the functions 𝑔±(𝑥, 𝑦) in Eq. (5). In both cases of 𝐼±(𝑥, 𝑦), the
width of the fitted Gaussian function at 1∕𝑒2 gives the spot sizes 𝑑
around 40 μm. By comparison, the shear displacement determined by our
approach is much smaller than the spot size (Δ ≪ 𝑑). This suggests that
we are able to resolve the spatial separation of the light beams having
nearly 80% overlap in both spatial space and 𝑘⃗ space. The optical beam
shear angle 𝜀 is determined by the Eq. (6), i.e. 𝜀 = 58.94 ± 0.33 μrad,
which is significantly smaller than the diffraction angle of our incident
laser beam 4𝜆∕(𝜋𝐷) = 231 μrad and far beyond the diffraction limit.

4. Statistical error analysis

To further validate the measurement and underlie the localization
precision, we conduct the statistical error analysis with 100 frames
of image at each of the polarization states. They are 𝐼±𝑖 (𝑥, 𝑦) for 𝑖 =
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Fig. 5. Histogram of the shear displacement between the center positions of the two spots.
The average separation distance is 8.840 μm, and the standard deviation is 0.064 μm.

Table 1
The optical beam shear angles of a series of Nikon
Nomarski prisms.

Nikon Nomarski prism Shear angle 𝜀 (μrad)

40×II 58.94 ± 0.42
60×IV 83.77 ± 0.47
100×I 134.04 ± 0.39

1,… , 100. For each of the images, we use the aforementioned localiza-
tion analysis to determine the central positions and the corresponding
optical shear displacements. Fig. 4 shows the scatter of all central
positions with respect to (𝑜𝑥, 𝑜𝑦) = ( 𝑥̄

++𝑥̄−
2 , 𝑦̄

++𝑦̄−
2 ), where (𝑥̄+, 𝑦̄+) and

(𝑥̄−, 𝑦̄−) are the mean position vectors among all measured ones for
𝑃+ and 𝑃− respectively. The insets of Fig. 4 shows the distribution
of the data measured in each of the independent polarization states.
Statistically, the standard deviations of the position vectors are (46 nm,
48 nm) and (36 nm, 42 nm) for the polarization states 𝑃+ and 𝑃−

respectively. Increasing the number of independent measurements with
the application of the localization analysis does not further increase
the scattering of the data. This suggests that the error raised by our
experiment for the determination of the position vectors is in nanoscale.
Compared with the shear displacement, i.e. Δ = 8.841μm and the
diffraction-limited spot size 𝑑 = 40 μm, this localization error (𝛿) is far
beyond the diffraction limit, i.e., 𝛿 ≪ Δ ≪ 𝑑.

Bringing the experimental errors to the shear displacement, Fig. 5
shows the histogram of all calculated shear displacements

Δ𝑖𝑗 =
√

(𝑥+𝑖 − 𝑥−𝑗 )2 + (𝑦+𝑖 − 𝑦−𝑗 )2, (7)

for 𝑖, 𝑗 = 1,… , 100. The expectation of the shear displacement is ⟨Δ𝑖𝑗⟩ =
8.840 μm with a standard deviation of 0.064 μm. Following Eq. (6), the
optical beam shear angle 𝜀 is 𝜀 = 58.94 ± 0.42 μrad. This result agrees
with that obtained from only two images and the localization fitting
standard error is consistent with the statistical error. It suggests that
during every measurement, the accuracy to determine the shear angle
is sufficiently high for just taking two frames of 𝐼+(𝑥, 𝑦) and 𝐼−(𝑥, 𝑦).
Table 1 lists the optical beam-shear angles of a series of Nikon Nomarski
prisms determined by our method using the same setup. The angular
precision of them are all less than 0.5 μrad.

5. Theoretical precision

In principle, if we only consider the effects of photon number
statistics and the finite pixel size, the precision of our method can be

estimated as [10].

𝛿 ≈

√

𝜎2 + (𝑎2∕12)
𝑁

+ 4
√

𝜋𝜎3𝑏2

𝑎𝑁2
, (8)

where 𝜎 = 𝑑∕4 is the standard deviation of the single Gaussian spot
of intensity distribution, 𝑎 is the camera pixel size, 𝑁 is the number of
photons collected, and 𝑏 is the background noise. In our experiment,
𝑑 = 40.8 μm, 𝑎 = 2.4 μm, 𝑁 = 308 600, and 𝑏 ≃ 0 by which the
theoretical localization error is 𝛿 ≈ 0.018 μm and shear angle error is
𝛿𝜀 =

√

2𝛿∕𝑓 ≈ 0.17 μrad. Admittedly, the error in our experiment is
greater than this theoretical value by a factor of 3. This is attributed
to the laser power instability, the unavoidable perturbations from the
environment, the alignment of the half-wave plate with respect to the
prism, the mechanical vibration, and the temperature fluctuation in the
lab. In our experiment, we took 100 frames for 𝑃+ firstly and then next
100 frames for 𝑃−. The effect of the perturbations are added up during
this sequential data acquisition process, which can be reduced if we can
replace the half-wave plate with a fast polarization switch (such as an
electrically controlled liquid crystal polarization rotator) and take the
two frames for 𝐼+(𝑥, 𝑦) and 𝐼−(𝑥, 𝑦) consequentially within a short time
interval. In this way, although the position vectors of the centroids are
scattered at the same level, the numerical error from the determination
of the correlated shear displacement Δ𝑖𝑖 would be significantly reduced.
In addition, using a camera with a higher saturation level for receiving
more photons [i.e. the value 𝑁 in Eq. (8)] in each frame, a nanometer
localization accuracy would be achieved [11], which may lead to a
measurement precision of 0.01 μrad.

6. Conclusion

In summary, we proposed a method that precisely characterizes the
optical beam-shear angle of polarizing prisms with the application of
the localization analysis. Using a Fourier lens, the two orthogonally
polarized beams after the prism are transformed into the 𝑘⃗ − 𝑃 joint
space, where the central positions of each of the polarization modes
can be determined independently. Since the polarization states are
distinguishable, it is possible to directly measure the spatial separations
of two light beams with almost 80% overlapping. We demonstrated our
method in a series of Nikon Nomarski prisms and achieved the angular
precision within 0.5 μrad. We also discussed the theoretical precision
limit, which suggests that a much higher precision can be achieved
in an improved system. The result (𝜀 = 58.94 ± 0.33 μrad) obtained
from the two images data in Figs. 2(b) and (c) agrees well with that
(𝜀 = 58.94±0.42 μrad) from the statistical analysis shown in Figs. 4 and 5.
This validates that only two images [as Figs. 2(b) and (c)] are sufficient
to determine the optical beam-shear angle with a high accuracy. The
design of optical setup is a stand-alone experiment that can be applied
to many other polarization-based birefringent devices.

In our setup, the numerical aperture (NA=0.01) of the focused beam
is small and the polarization effect on the spot Gaussian shape can be
ignored. For a tightly focused spot with a high NA lens, its shape become
elliptical [14,15]. This problem can be solved by converting the two
orthogonal linear polarizations to two circular polarizations by placing
a quarter-wave plate after the prism. Another alternative approach is to
replace the fitting circular Gaussian function in Eq. (5) with an elliptical
Gaussian function or the point spread function of the lens. Although in
this work we take a Gaussian beam as the input, our method can be
extended to other kind of beams, such as Cosine-Gauss beam, Mathieu’s
and Webber’s beams, on which the fitting Gaussian function should be
replaced by the corresponding beam profile.
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