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A B S T R A C T   

We propose a new experimental mechanics method: dual beam-shear differential interference 
microscopy (DInM) for full-field surface deformation measurement. The method integrates the 
principles of differential interference contrast, photoelasticity, digital image correlation and the 
theories of continuum mechanics for a 4D quantification of the surface topography. Our first 
DInM prototype provides the lateral resolution of 787nm for up to 12% measurable out-of-plane 
strains. The resolution can be improved by using the shorter spectrum light and higher magni-
fication objective lens. We use our system to characterize the buckling profile of Si microribbon 
on an elastomer substrate, which was verified by atomic force microscopy. We also demonstrate 
the stress-induced phase transformation in NiTi alloy by our system. The evolution of the surface 
topographies and the full-field deformation gradients are successfully captured and quantified. 
The dynamic measurement provides the information to calculate the relative transformation 
strains between phases of different symmetries. The establishment of dual beam-shear DInM 
opens a new avenue in the field of experimental meso/micromechanics.   

1. Introduction 

Despite of state-of-art technologies for mechanics characterization in nanometer scale and beyond, the majority of modern me-
chanics problems need to be studied in the scale from microns to sub-millimeters, such as the buckling of thin shell structures, the 
deformations of semiconductor devices and biomedical implants under sophisticated loading. A typical paradigm of continuum 
mechanism is to study the topographical map of a deformable body in R3. To investigate such a deformation map, we need to know the 
displacement field of each of the points in current configuration. In fact, it would be better to know the gradient of the displacement 
field or the gradient of the local deformation, thus the strain field. In continuum scale, the most popular experimental mechanics 
approach for this purpose is the digital image correlation, which can essentially track the spatial positions of a set of subdomains in 
reference configuration. A straightforward outcome by maximizing the cross-correlation between undeformed and deformed images is 
the in-plane displacement field (u, v). The set of gradients 
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(∂u/∂x, ∂u/∂y, ∂v/∂x, ∂v/∂y)

are computed by further iterative optimizations under the elastically linear assumption. In tandem with the rapid growth of computer- 
based analysis algorithms the digital image correlation has become the leading technique for surface deformation measurements in the 
past few years (Peters and Ranson, 1982; Sutton et al., 1983; 2009), but some limitations still exist. The primary limitation of digital 
image correlation is its assumption that the gradients (∂w/∂x, ∂w/∂y) do not influence the in-plane deformation too much where w is 
the out-of-plane displacement component. With the conventional single camera setting, it is rather difficult to directly characterize the 
out-of-plane deformation. Particularly, when the out-of-plane distortion is sufficiently large, the errors of deformation gradients given 
by conventional digital image correlation become not negligible. Here we do not discuss the two-camera settings for 3D digital image 
correlation because both experimental setting and the post-data processing algorithm are much complicated than the conventional 
experiment. In addition, the quality and randomness of speckle pattern on the sample surface play important roles in the accuracy and 
reliability of the measurement. Sometimes it is not easy to observe the evolution of microstructure especially fine surface reliefs due to 
the coverage of the speckle pattern. 

Another branch of experimental mechanics is the interferometry-based approaches such as traditional photoelasticity, Moiré 
interferometry and holography. With the ordinary optical settings, these methods are suitable to characterize the in-plane components 
of local deformation gradient. A common feature of these techniques is that the surface deformation field is resolved by periodic 
fringes. The accuracy of the measurements strongly depends on the environmental stability and the quality of light source. Some even 
depend on the quality of birefringent coatings or gratings. Among current interferometry-based characterizations, it is nearly 
impossible to conduct a direct microstructure observation simultaneously with the mechanics measurement. 

A new experimental method (Zeng et al., 2019) was proposed recently to quantify the surface reliefs of a phase-transforming 
crystalline solid, which enables the observation of microstructure and the instantaneous measurement of the spatial configuration 
of the domain in out-of-plane direction. The key component of this characterization is the differential interference contrast (DInC1) 
technique. In fact, the DInC technique has been widely used in biology to achieve the contrast of transparent sample since 1950s 
(Nomarski, 1952; Smith, 1952). Since then various mathematical models have been developed to study the relation between the 
intensity of transmitted light and the phase lag produced by optical path gradient (Shribak and Inoué, 2006). The goal is to optimize 
the image contrast for unlabeled transparent living cells based on their birefringence property (Nguyen et al., 2017). The principle of 
DInC can be also used for opaque materials in a reflected setting, with which the surface topography can be fully determined beyond 
just achieving optimal phase contrast in all orientations. However, up to now, the quantitative information extracted from the dif-
ferential interference contrast has not been formally integrated to the experimental mechanics because neither mechanics theory nor 
formal experimental settings are rationalized for the full-field deformation tensor measurement. In this paper, we name this new 
method (Zeng et al., 2019) differential interference microscopy (DInM) because the phase contrast is no longer our experimental goal. 
The DInM should be an emerging approach to characterize the mesoscale surface topography in R3encoded by the map of local 
deformation gradients. If we consider a surface deformation map x : ℬ0 → R3,for any X ∈ ℬ0the DInM is supposed to give a measure of 

(
∂x3

∂X1
,

∂x3

∂X2

)

(1)  

where the indices 1 and 2 denote the in-plane components while the index 3 denotes the out-of-plane component. But the most recent 
DInM method can only provide the spatial form of only one of the components in the expression (1). The detailed limitations is 
concluded in Section 2. 

2. Review of single beam-shear mode differential interference microscopy 

The underlying principle and mathematical framework of the single beam-shear DInM have been introduced in reference Zeng 
et al. (2019). Fig. 1 compares the DInM (a) and the conventional photoelastic method (b) used for continuum mechanics character-
ization. Both methods use the birefringent crystal to obtain certain phase lag between orthogonal polarization components. For 
example, there is a quarter period retardance between p1 and p2 polarizations as shown in both (a) and (b) of Fig. 1, but such a 
retardance plays different roles in different optical setups. In photoelastic experiments, the birefringent material is used as a thin film 
coated on the sample surface in undeformed configuration. Various interference mechanisms (Cloud, 2009; Fourney, 1968; Post et al., 
1994) are used for photoelasticity depending on the optics setup. In some experimental setup, grating patterns are used as the surface 
coating layer (Post, 1972). The surface coating layer deforms together with the sample surface under mechanical loads. The local 
deformation gradient is calculated from the periodic fringes produced by interference between two polarized light beams with some 
phase lag (Fourney, 1968). The photoelastic characterization provides a linear map from the 2D surface domain to in-plane defor-
mation field in R2,as illustrated in Fig. 1 (b). The DInM uses the birefringent material as a functional module – Nomarski prism – in an 
imaging system, not attached to the sample surface. The Nomarski prism does not only produce a constant phase lag but also shears one 
polarized light beam relative to the other by a very small angle usually in μrads. On the sample surface, the sheared light for imaging 
illuminates a surface area where the information of local out-of-plane variation is captured by the DInC image. This is illustrated in 
Fig. 2 (a), without loss of generality, we can set the coordinate system x1 − x2 − x3where x1 − x2spans the sample surface with x1 axis 

1 We use DInC for differential interference contrast to distinguish from DIC for digital image correlation. 
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aligned with the beam-shear direction, and x3 denotes the out-of-plane direction aligned with light propagation. Let ℬbe the field of 
view exposed by the light with a sufficiently small beam-shear angle, the DInM gives a pixelated gray-scale image, e.g. Fig. 2(b). For 
any pixel (x1,x2) ∈ ℬ, the phase lag ϕ is related to the local variation of x3 in Fig. 2(c) by 

ϕ(x1, x2) =
2π
λ
[x3(x1 + s, x2) − x3(x1, x2)] (2)  

where the value s ∈ (0, ∞) is the magnitude of the beam-shear vector (Zeng et al., 2019). The intensity field ℐof the DInM image 
depends on the phase lags generated during both illumination and imaging paths, calculated as 

ℐ(x1, x2) = ℐ 0(x1, x2)sin2(ϕ(x1, x2)+ϕ0) + ℐ s. (3)  

Here ℐ0,ϕ0 and ℐ sare the optical parameters that have been calibrated before characterization. The parameters ℐ0and ℐ srepresent the 
intensity fields of the reference illumination path without Nomarski prism and the residual intensity caused by the stray light. Their 
calibration procedures have been introduced in reference Zeng et al. (2019). The parameter ϕ0 is the phase lag generated by the 
functional optics in the light path. There is one more essential parameter for this characterization, that is the beam-shear vector s = (s,
0)written in x1 − x2 − x3basis. Not only it determines the accuracy of surface topography, it also plays an important role in lateral 
resolution of our method, which means that the lateral resolution of DInM depends on two factors: light wavelength and beam-shear 
vector. 

The single beam-shear DInM with application to experimental mechanics has several limitations. The reported DInM method does 
not trace the surface deformation with respect to the reference configuration. That is, all measures are under Euler description. Even in 

Fig. 1. (a) Light passing a Nomarski prism consisting of two birefringent crystal wedges used to generate a beam-shear between orthogonally 
polarized light rays, which characterizes a topographic map from a 2D domain to R3. (b)Light passing a birefringent film used for a common 
photoelasticity measurement. From the undeformed configuration to deformed configuration, periodic fringes form due to the interference between 
the orthogonally polarized light rays having a phase lag. 

Fig. 2. Schematic of the image domain exposed by a beam-shear light. (a) Sheared light illuminates the sample surface within the field of view 
shown as (b) the pixelated gray-scale image consisting of (c) the 3D surface topography information. 
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some cases, the spatial form of deformation is the goal of characterization, the single beam-shear feature fails to give a full tensor 
measure of (∂x3/∂x1, ∂x3/∂x2). All commercially available DInC microscopes do not provide the accurate value of the beam-shear 
vector, that is neither magnitude nor direction information are available. Last but not least, all commercial microscopes use 
halogen light source, which is highly incoherent. This will cause large errors in the calculation of phase using the equations (2) and (3). 
In order to turn the idea of DInC to a true experimental mechanics method DInM, we need to underlie a set of equations for mechanics 
characterization, completely re-design the light path to achieve the full tensor field measurement, setup the accurate calibration 
standards and implement the control and post-image processing algorithms. 

3. Dual beam-shear differential interference microscopy 

As demonstrated in the single beam-shear mode, we successfully characterized the surface topography for a laminated twinning 
structure using a commercial Nikon Ni-U reflected light DInC microscope (Zeng et al., 2019). This section will extend the theory for the 
DInM characterization using a dual beam-shear mode. The overall design of the light path is shown in Fig. 3(a). We use the LED light 
(ThorLabs M470L3) to replace the halogen source, which is sufficiently coherent for our design and less self-diffractive than the laser 
source. Fig. 3 (b) shows the energy spectrum of our LED source with the expectation value of wavelength λ = 472.11nm. The dual 
beam-shear mode is implemented by two liquid crystal retarders (LC1 and LC2) and two Nomarski prisms. 

The illumination path starts from a blue collimated LED light, which passes the polarizer (P1) and becomes a linearly polarized 
light. The linearly polarized light is reflected by a non-polarizing beamsplitter cube (BS) toward the dual beam-shear module: LC1 - 
Prism1 - LC2 - Prism2. After passing through the dual beam-shear module, the sheared light is focused at the back-focal plane of the 
objective lens. The depth of focus is in range of several microns to tens of microns depending on the type of objective lens. Note that this 
value does not solely determine the upper bound of the components ∂x3/∂Xi (i = 1, 2) because the magnitudes of the beam-shear 
vectors also play a role. The imaging light path is accounted as the reflected light by the sample surface, which follows the same 
route back and passes the beamsplitter cube (BS) and an analyzer (P2), finally reaches the camera for imaging. In our design, both 
speed and image quality are equally important. Integrated with the budget consideration, we choose the Zyla sCMOS 5.5 PLUS camera 
with speed of 100 fps and dynamic range 33,000. 

The dual beam-shear mode is implemented by a set of optics: LC1 - Prism1 - LC2 - Prism2. The working mechanism is illustrated in 
Fig. 3(c). We use the liquid crystal to manipulate the phase lag between two polarizations without inducing spatial shears. The 

Fig. 3. The principle of dual beam-shear differential interference microscopy: light path and beam-shear mechanisms. (a) The overall illumination 
and imaging light path and corresponding optical modules. (b) The spectrum of the LED light source used for DInM. (c) The illustration of the 
transverse field at different optical stages with respect to the two beam-shear modes. 
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principle of phase-tuning is similar to that of the photoelasticity measurement illustrated in Fig. 1 (b). That is the propagation of 
electromagnetic waves is perpendicular to two principal directions of the crystal permittivity tensor while the phase of one polarization 
is retarded to the other because of the crystal anisotropy. Here we use two identical liquid crystal retarders (LCC1221-A from Thorlabs) 
for adding an arbitrary small phase lag (LC1) and swapping polarization components between x1 and x2 directions (LC2). The 
mathematical derivations for implementing the dual beam-shear function are concluded in Appendix. At each of the beam-shear 
modes, the shear vectors of the polarized light are 

BS1:(s, 0),
BS2:(0, s̃) (4)  

The scalars s and ̃sare the magnitudes of the shear distances caused by the Nomarski Prism 1 and 2. In our experimental setting, s ≈ s̃. In 
Section 4, we determine their precise values using the localization method (Chiu et al., 2019). 

After the light reaches the sample surface and is reflected back passing through the same light path, the analyzer P2 is used to 
superimpose the two polarizations and then the CMOS camera captures the differential interference image for the intensity field |E|2 

for each of the beam-shear modes respectively. For post processing, the effective intensity profiles are calculated as 

BS1:ℐ̂ 1 = ℐ 1 − ℐ s = ℐ 0sin2
(

[s]
∂x3

∂x1
+ ϵ+ δ1

)

(B1)  

BS2:ℐ̂ 2 = ℐ 2 − ℐ s = ℐ 0sin2
(

[̃s]
∂x3

∂x2
+ ϵ+ δ2

)

(B2)  

where [s] = 2πs
λ , [̃s] = 2πs̃

λ are the dimensionless optical constants, ℐ1,2are the intensity fields measured at the CMOS camera by our 
system, ℐ0is the reference intensity field without the dual beam-shear module, ℐ sis the environmental intensity caused by stray light, ϵ 
is the phase induced by prisms and δ1,2 are the total relative retardances caused by the two LC retarders. The local differential 

components 
(

∂x3
∂x1

,∂x3
∂x2

)

are the decoupled variables of (B1) and (B2). Except the reference intensity ℐ0,the rest constants and coefficients 

in (B1) and (B2) can be determined and calibrated prior to the measurement. 
To solve for the surface differential variables from (B1) and (B2), we have to take 2 frames in each of the beam-shear modes, i.e. 4 

frames in total. In the ith beam-shear mode, i = 1,2,we acquire the frames ℐ̂ iand ℐ̂
′

iat two retardances δi and δ′

i. The surface differential 
component x3,ifor i = 1,2can be calculated from 

ℐ̂ i

ℐ̂
′

i

=
sin2( [s]x3,i + ϵ + δi

)

sin2( [s]x3,i + ϵ + δ′

i

). (5) 

We only consider the surface differential component in the range shown in Fig. 4 within which the sinusoidal function is non- 

negative for both frames. The range of measurement for x3,i is from − (ϵ+δi)
[s] to π− ϵ− δ

′

i
[s] . Using our current optical parameters, the 

measurable range presented as the surface inclined angle are [ − 5∘, 7∘]. The spatial scale of common surface reliefs and deformed 
microstructures are usually in the scale of one to hundreds of microns. If we consider a lateral 100 microns microstructure, the surface 
descent/elevation would be measured up to 12% out-of-plane strain, which has been sufficient for most solid mechanics problems in 
mesoscale. If a larger measurable range of out-of-plane deformation is requested, we can couple 2 or 3 periods of the sinusoidal 
function. For simplicity, here we only derive the differential variable x3,iwithin the designed range. Let ϕi = ϵ+ δiand Δδi = δ′

i 
− δi,equation (5) becomes 

Fig. 4. The range of measurement for the surface differential component x3,i.  
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⎛

⎜
⎝cosΔδi

̅̅̅̅̅

ℐ̂ i

ℐ̂
′

i

√
√
√
√ − 1

⎞

⎟
⎠sin

(
[s]x3,i +ϕi

)
= − sinΔδi

̅̅̅̅̅

ℐ̂ i

ℐ̂
′

i

√
√
√
√ cos

(
[s]x3,i +ϕi

)
. (6)  

We choose a small enough Δδi between the two frames such that the measurable region is sufficiently large (Fig. 4), then 

x3,i =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

π/2 − ϕi

[s]
, cosΔδi

̅̅̅̅̅

ℐ̂ i

ℐ̂
′

i

√
√
√
√ = 1

1
[s]

arctan

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−

sinΔδi

̅̅̅̅̅

ℐ̂ i

ℐ̂
′

i

√
√
√
√

cosΔδi

̅̅̅̅̅

ℐ̂ i

ℐ̂
′

i

√
√
√
√ − 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

−
ϕi

[s]
, cosΔδi

̅̅̅̅̅

ℐ̂ i

ℐ̂
′

i

√
√
√
√ < 1

1
[s]

arctan

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−

sinΔδi

̅̅̅̅̅

ℐ̂ i

ℐ̂
′

i

√
√
√
√

cosΔδi

̅̅̅̅̅

ℐ̂ i

ℐ̂
′

i

√
√
√
√ − 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+
π − ϕi

[s]
, else.

(7) 

The expression for the out-of-plane differential variables given by (7) is analytical. In principle, if our camera and the response of 
our optics are sufficiently fast, we can capture the quantitative evolution of the surface deformation from the reference configuration in 

real time. We can characterize the Lagrangian components 
(

∂x1
∂X1

, ∂x2
∂X2

)

by local digital image correlation (DIC) in post image processing. 

This will be illustrated in Section 5. The out-of-plane Lagrangian components of deformation gradients for I = 1,2are calculated as 

x3,I =
∂x3

∂xi

∂xi

∂XI
=

∂x3

∂XI
. (8) 

Practically, there exist artificial singularities in the DInC image from the system fluctuations. In addition, surface defects of the 
specimen introduce non-transforming discontinuities in the image as well. These facts make the measured gradient field incompatible, 
which causes the imaging domain not integratable, thus the three-dimensional surface topography can not be attained directly from 
the measured gradient field. Let ∇x3(x) = x3,i ∈ R2for all x ∈ ℬrepresent the measured gradient field by dual beam-shear DInM. There 
exists a compatible gradient field close to ∇x3, which is curl-free and 

min
∇×ξ=0

‖ ξ − ∇x3(x) ‖, for allx ∈ ℬ. (9)  

Here ‖ ⋅ ‖ is the vector L2 norm. The norm in (9) is a quadratic function of ξ ∈ R2under the linear constraint ∇× ξ = 0. Therefore, for 
any given 1 million meshgrid domain ℬ,(9) always has a global minimum. Let ∇x3 ∈ R2be the minimizer of (9), the integration 

x3(x1, x2) =

∫

𝒞

∇x3 dℓ (10)  

is unique independent of the integration path 𝒞⊂ℬ. We set x3(0,0) = 0as the initial condition, and calculate the relative surface height 
profile by direct integration of (10). In contrast to many scanning based surface probes such as atomic force microscope and laser 
surface profiler, the gradient field of our approach is exact, but the deformation field (or displacement field) is derived. The 3-dimen-
sional topography given by our experiment is verified by the thin-film buckling experiment in Section 5.1. 

4. Parameters calibration and system synchronization 

The accuracy of the out-of-plane deformation gradient components strongly depend on the optical parameters. However, there 
have not been any standard calibration procedures proposed for the DInM method. This section will introduce our calibrations for 1) 
optical constants [s] and [̃s]for both beam-shear modes, 2) liquid crystal retardence 4) bias phase of the Nomarski prism and 5) stray 
light intensity. 

Z. Zeng et al.                                                                                                                                                                                                            
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4.1. Optical constants 

We use a spectrometer (Ocean Optics USB4000) to calibrate the wavelength of our blue LED light (ThorLabs M470L3) with a 
nominal wavelength marked as 470nm. The collimated LED light directly shines on the sensor of the spectrometer, with which we plot 
the power spectrum in Fig. 3(b). The profile of the spectrum is fitted by a Gaussian function, whose expectation value λ = 472.11nm is 
used as the calibrated wavelength in our measurement. 

The beam-shear angles in each of the shear modes are calibrated by the localization analysis of the transverse polarizations in 
Fourier space. The detailed methodology have been reported in reference Chiu et al. (2019). The inset of Fig. 5 cites the underlying 
principle of the method, which uses a half-wave plate (HWP) to rotate the linear polarization of the incident light before reaching the 
prism. In our system, we treat the LC1 - Prism 1 - LC2 - Prism 2 as an integrated module. The mean shear angle is calculated as α =
Δ
f where Δ is the mean separation of the two polarizations in the Fourier plane and f = 15mm is the focal length for the calibration 
device. For the system built in Fig. 3(a), the beam-shear angles are α1 = 58.8 ± 1.733μrads for BS1, α2 = 59.1 ± 1.667μrads for BS2. 

The objective lens used for this system is 10X Nikon CFI60 TU Plan Epi ELWD Infinity Corrected with focal length fDInM = 20mm. 
The magnitudes of the two beam-shears are |s| = α1fDInM = 1176nm and |ŝ| = α2fDInM = 1182nm. Substituting the wavelength, the 
dimensionless optical constants of our system are 

[s] =
2πs
λ

= 15.6544, [̃s] =
2πs̃
λ

= 15.7308. (11)  

4.2. Liquid crystal retardance 

We use an individual optical system in Fig. 6(a) to calibrate the relation between the retardance ϕLCand the applied DC voltage V. 
We use the same LED source as the incoming light. It passes a linear polarizer (P1) with polarization axis along x2, then the filtered 
electric field with components (0, E) passes through the tested LC with its fast axis aligned along the 45∘ counter clockwise from x1. By 
(A.4), the outgoing transverse electric field is 

E =
E
2

eik1x3

[
1 − eiϕLC

1 + eiϕLC

]

. (12)  

The outgoing beam gets filtered by another polarizer (P2) with polarization axis along x1. Finally its transverse component E2e
ik1x3 (1 −

eiϕLC )is captured at the power meter (Thorlabs PM200) as 

ℐLC =
|E|2

2
(1 − cosϕLC). (13)  

The relation between intensity and the retardance is plotted in Fig. 6(b). Since the retardance ϕLCis a function of the applied electric 
field, we smoothly tune the DC voltage from 0 to 10V on the LC retarder and collect the corresponding intensity values as shown in 
Fig. 6 (c). By equation (13), the characterized intensity - voltage relationship can be converted to the retardance - voltage relationship 

Fig. 5. Localization analysis of the transverse polarizations in Fourier space for beam-shear angle calibration.  
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as shown in Fig. 6 (d). We conduct this calibration independently for the two LC retarders used in our dual beam-shear DInM system, by 
which we can precisely assign a π retardance to LC2, and any designate retardance with the voltage control. 

4.3. Other system parameters 

The stray light intensity and the constant phase lag caused by two in-series prisms are calibrated every time before conducting the 
dual beam-shear DInM characterization. We use a flat Si wafer as the standard sample under DInM, the captured intensity can be 
expressed as 

ℐ i = ℐ 0sin2(ϕi) + ℐ s, i = 1, 2 (14)  

where the surface differential term x3,i = 0for the flat standard sample for both beam-shear modes, and ϕi characterizes the total biased 
phase induced by all relevant optics such as retarders and prisms. As indicated in Fig. 6(d), by tuning voltage from 0 to 10 V, we can 
change the retardance of nearly 2π which covers more than one period of sin 2( ⋅ ). The stray light profile for ith beam-shear mode is 

ℐ si = min
ϕi∈[0,2π]

ℐ i. (15)  

In principle, the stray light intensity is independent of the beam-shear modes, therefore the intensity profiles ℐ s1 and ℐ s2 should be the 
same up to statistical errors in different beam-shear modes. If the chosen standard sample is not perfectly flat, such deviations may 
increase. In practice, we calibrate it independently for both beam-shear modes. The initial reference intensity profile can be calculated 
by ℐ0 = maxϕiℐ i − ℐ si . But it may change during the surface deformation, we do not use it directly to compute the surface differential 
variables. 

In the real experimental settings, the total bias phase ϕi consists of two parts: the phase lag caused by the prisms ϵ and the 
retardance δi under specific applied electric field. Here δi is readily from Fig. 6(d) for both beam-shear modes. The phase lag by prism is 
independent of the beam-shear mode, thus we use BS1 to calculate it as 

ϵ = arcsin <

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ℐ 1 − ℐ 0

ℐ s1

√

> − δ1(V0) (16)  

where V0 is the assigned voltage for driving δ1 retardence in LC1 and < ⋅  > is the average value of the normalized intensity over all 
image pixels. For our system ϵ = 0.57335. 

4.4. Implementation for dynamic measurement 

For any characterization of homogenous deformations, it is necessary to capture an image sequence showing the continuous change 
of surface topographies from a reference configuration. That is, we need to implement a dynamic measurement using dual beam-shear 
modes during loadings/unloadings. The frame rate of the camera is 100 fps under standard global shutter mode for a full 4M pixels 
image. This speed is set without consideration of data transferring time. In order to improve the speed of video recording, we will 
capture 1M pixels by the rolling shutter mode, which reduces the exposure time to 5ms. Together with the data transfer, it takes 9ms 
for each of the image frame. However this is not the effective speed of our system because we need to acquire two image frames for 
each of the beam-shear modes in series. Here we define an effective frame as the bundle of 2(BS1) + 2(BS2) images. We also need to 

Fig. 6. Optics for calibration of liquid crystal retardance. (a) Experiment setup, (b) Theoretical intensity calculated by (13). At the power meter, the 
calibration results of our LC1 and LC2: (c) Voltage dependent intensity spectrum measured by the Power meter, (d) Calculated retardance - 
voltage relation. 
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synchronize the data transferring time with the control of retarders to minimize the cost of dummy time. 
Fig. 7 underlies the algorithm of the synchronization between the camera shutter and two retarders. The retardance of LC1 is set to 

switch between δ1 and δ1 +
π

15,while the retardance of LC2 switches between 2π2 and π. The ramping time of the LC retarders are 
asymmetric during rising and falling periods. According to Fig. 6(d), the retardance decreases as the applied voltage increasing and the 
phase tuning is more sensitive at a higher applied voltage. For LC1, the rising / falling time from a small δ1 (i.e. high voltage phase) is 
10ms and 3ms respectively. For LC2, the rising / falling time is 20ms and 10ms respectively. The red / blue lines in Fig. 7 are the 
optimized control sequences for each of the retarders. The duration when LC2 is at 2π corresponds to the beam-shear mode 1 (BS1) 
marked as the blue regions, while the duration when LC2 is at π corresponds to the beam-shear mode 2 (BS2) marked as the red regions. 
Within each of the beam-shear modes, the first and second images are taken in series with a 3ms idle time. This idle time is syn-
chronized with the phase falling time of LC1. As shown in Fig. 7, the neighboring effective frames share two image frames, which 
results in a total of five effective frames in 3× 72 = 216ms, therefore the effective frame rate of our system is counted as 1000 /(216 
/5) = 23fps. 

5. Experimental demonstration of dual beam-shear DInM 

The first prototype of the dual beam-shear DInM is built in the reflected imaging mode for opaque materials. The Hong Kong Light 
Innovative Technology Ltd. helped us to upgrade our system to a state-of-the-art dual beam-shear (BS) DInM with an additional 
transmitted image function for transparent materials. All theoretical calculations as well as the parameter calibrations are imple-
mented and integrated into a software written in LabView. This section uses two examples to demonstrate the quantitative mea-
surement of surface deformation gradient by the dual beam-shear DInM. 

5.1. Silicon microribbon buckling 

We use the reflected light dual beam-shear DInM to characterize the wavy profile of bucked Si microribbons on a PDMS elastomer 
substrate. As a system verification, we conduct a quantitative comparison for the selected surface area using the atomic force 
microscopy. 

The free-standing silicon microribbon with dimension 2000μm × 40μm × 0.35μm in Fig. 8(a) was fabricated on a single crystal Si 
wafer based on the micro-processes introduced in reference Jiang et al. (2007). We choose the PDMS elastomer with 0.5% prestrain (i. 
e. greater than the critical prestrain for inducing buckling (Huang et al., 2005)) to transfer the silicon microribbon from the substrate as 
shown in Fig. 8. The chemical property of the PDMS can be manipulated by UV/ozone so that the Si ribbon is strongly adhesive to it 
during the transfer process (Jiang et al., 2007). After transferring, the PDMS is released gradually, and the Si microribbon start 
buckling as shown in Fig. 8. 

The post-buckling surface topography of the Si microribbon is characterized by our system in Fig. 9 (a) x3,1 = ∂x3
∂x1

and (b) x3,2 =
∂x3
∂x2

,in 
which the labeled location A-B is also measured by atomic force microscopy (AFM). The gradient component x3,1 is mostly uniform, 
while x3,2 is periodic. It reveals that the buckling direction is closely aligned with the BS2 direction. By (9) and (10), we construct the 3- 
dimensional topography showing the wavy surface, which agrees with the AFM measurement for the same region, shown in Fig. 9 (c). 
More quantitative verification is conducted by comparing the periodicity and amplitude of the buckled profile along x2 axis. We 
calculate the mean value of x3 over x1 axis for both the re-constructed data from DInM and the data from AFM, which is plotted in Fig. 9 
(d). The periodicity matches remarkably well. The x3 profiles given by DInM and AFM agree with each other with the maximum 
deviation about 200nm at x2 = 40μm. This deviation might be caused by the sample handling and traveling between different testing 
systems. This experiment shows that the spatial gradient and topography characterization by our new method is feasible. 

Fig. 7. Algorithm of synchronization for camera and LC retarders.  

2 Because the absolute zero retardance is unachievable within the tuning voltage range at [0, 10V]. 
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5.2. Stress-induced phase transformation of Nickel - Titanium alloy 

We demonstrate the stress-induced phase transformation of a polycrystalline shape memory alloy Nickel - Titanium under uniaxial 
tension. Utilizing both digital image correlation and DInM (Fig. 10 and Fig. 11), the evolution of 3D surface topography is recon-
structed from the measurement of the instant full-field deformation gradient tensor. Simultaneously, the corresponding stress-strain 
behavior was characterized by a custom-made uniaxial loading device in Fig. 11 (a). The time-dependent local deformation is 
captured dynamically in the loading/unloading process. The testing sample is the polycrystalline 50.8 at. % Ni-49.2 at. % Ti from 

Fig. 8. Illustration of fabrication, transfer and buckling processes for Si microribbon on the PDMS pre-stretched elastomer.  

Fig. 9. (a)-(b) The measured out-of-plane gradient component ∂x3
∂x1

and ∂x3
∂x2

. Location A – B is selected to be characterized by atomic force microscopy 
(AFM). (c) The 3-dimensional surface topography comparison between our system and AFM with (d) the mean x3profiles over x1 direction for DInM 
(black) and AFM (red dashed) respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 

Fig. 10. Scheme of digital image correlation between neighboring image frames.  
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Johnson Matthey Incorporation (USA) cut in a dog-bone shape of dimension 20mm × 1mm × 0.38 mm, which is in austenite at room 
temperature. 

We use the Ncorr open-source 2D Digital Image Correlation Matlab Software (Blaber et al., 2015) to track a subset of the image 
between neighboring DInM frames. There are four image frames in every effective frame, two for the BS1 mode and two for the BS2 
mode. In our analysis, we use the second image frame of BS1 mode as the input for the digital image correlation calculation, e.g. we 
choose a 20 × 20 pixels subset ℬp⊂ℬof the ithframe showing a non-transforming surface defect in Fig. 10. We assume that there exists a 
homogeneous linear transformation F : X → R2for every X ∈ ℬp(i). We also assume that the intersection of the mapping F(ℬp(i))and 
the subset ℬp(i + 1)in the (i + 1)thframe is non-empty. The refined DIC solution u = (u1, u2)is used to calculate the deformation 
gradient for all meshing centers X ∈ ℬp(i)as 

Fig. 11. (a) Geometry of the testing sample and the uniaxial loading cell for tensile test. The tensile direction is aligned with the beam-shear x2 axis. 
(b) The true stress - strain curve marked by A, B, C, D, E, F stages corresponding to (c) the 3D surface topographies. The corresponding tracking zone 
is marked as the black square. The color bar quantifies the x3 profile in the unit of µm. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 

Fig. 12. The evolution of full-field deformation gradient components for a specific surface point. Red horizontal line denotes the mean value of ∂xi/ 
∂XJ within austenite and martensite phases respectively. 
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⎡

⎢
⎢
⎢
⎣

∂x1

∂X1

∂x1

∂X2

∂x2

∂X1

∂x2

∂X2

⎤

⎥
⎥
⎥
⎦
= arg min

F∈R2×2

∑

ℬp(i)

‖ (F − I)X − u ‖2, (17)  

where ‖ ⋅ ‖ is the Euclidean norm of R2. Using the diagonal components of (17), the Lagrangian component of deformation gradient are 
computed by equation (8). 

In DInM experiment, the tensile direction is aligned with BS2 axis (i.e. x2 axis) under the uniaxial loading. The field of view of our 
microscope is about 300µm wide, set near the middle part of the dog-bone specimen. The synchronized presentation of the full-field 
deformation gradient is available in the supplementary video (titled SI_DInM_NiTi) for the surface tracking point. The evolution of 3D 
surface topography upon loading/unloading is shown in Fig. 11 (c) corresponding to the stress-strain curve in Fig. 11 (b). We select six 
DInM effective frames A, B, C, D, E, F from the reversible superelastic plateau to reveal the evolution of austenite and martensite during 
phase transformation, which is calculated by (10). The tracking zone given by digital image correlation is marked as the black square in 
each of the selected frames. Upon the uniaxial tension, the austenite start deforming elastically (frame A). When the applied stress 
reaches the critical value (about 400MPa), the stress-induced phase transformation occurs and the martensite phase nucleates and 
grows. Frames B and E capture the austenite/martensite interfaces for the forward and reverse transformation respectively, which 
show Lüders-like morphology similar to the reported martensite microstructure at phase front (Brinson et al., 2004; Feng and Sun, 
2006; Tan et al., 2004; Zheng et al., 2016). The austenite/martensite interface propagates in different orientations for the forward and 
reverse transformations. They differ from the tensile direction about 45∘ from opposite sides. Limited by the field of view, our 
experiment does not fully cover the Lüders band structure. Frames C and D show the martensite morphology fully transformed from 
austenite. 

By tracking a specific surface sub-region shown as the black square in Fig. 11, the full-field gradient tensor is characterized in 
Fig. 12. The stretching components ∂xi/∂XI dominate the states of interface distortion between two phases. The shear deformation 
including in-plane and out-of-plane shears is subtle. The average transformation strain calculated as 

〈S〉 =

(
∑

i=1,2,3

∑

I=1,2

(〈
∂xi

∂XI

〉

M
−

〈
∂xi

∂XI

〉

A

)2
)1

2

, (18)  

is used to quantify the transformation tensile strain, in which < ⋅  > A,M denotes the mean value within the austenite (A) and martensite 
(M) respectively. Labeled as the red horizontal lines in Fig. 11, the averaged deformation gradient of austenite is 

〈
∂xi

∂XJ

〉

A
=

⎡

⎣
0.99856 0.00126
− 0.00167 1.00529
0.00585 0.03366

⎤

⎦,

while the averaged deformation gradient of martensite is 

〈
∂xi

∂XJ

〉

M
=

⎡

⎣
0.97067 − 0.00916
− 0.00967 1.05646
0.00302 0.02754

⎤

⎦.

Direct calculation by (18) givens 〈S〉 = 0.06011that agrees with the transformation strain characterized in the stress-strain curve in 
Fig. 11(b). 

6. Discussion and conclusion 

As demonstrated in the two experiments, our method is suitable to quantify the surface reliefs during the dynamic loading process 
in micron to sub-millimeter scales. Integrated with the theories of continuum mechanics, this micromechanics system provides 4D 
structure-property characterization for the deformable materials. 

As the rapid development of state-of-the-art structural probes, the experimental mechanics have advanced excessively. By syn-
chrotron X-ray diffraction microscopy, the grain structures as well as the localized deformation can be in-situ quantified, e.g. in 
strained NiTi wire (Feng and Sun, 2006; Sedmák et al., 2016) and in polycrystalline CuAuZn alloy (Chen et al., 2016). Thanks to the 
advanced fabrication techniques, the speckle patterns can be made in nanoscale, which enables the digital image correlation under 
high-resolution electron microscope (Kimiecik et al., 2016). Together with the automatic stitching algorithm by machine learning, it is 
now possible to resolve the twinning inside a sub-micron grain while mapping the millimeter size grain structure of martensite by 
digital image correlation e.g. in NiTi shape memory alloy (Polatidis et al., 2020) and Mg alloy (Chen et al., 2018). In addition, there are 
many high-quality works related to in situ observation of microstructure evolution and structural quantification (Brinson et al., 2004; 
Chen et al., 2016; Soejima et al., 2016). 

The dual beam-shear DInM introduced in this paper can be seen as a hardware extension for digital image correlation to cover the 
mechanics characterization at micro to meso scale. It is also a stand-alone instrument, which directly provides the spatial deformations 
under dynamic loading conditions. For the phase transforming materials, it can provide a quantitative measure of deformation of a 
propagating interface. The existing in-situ quantitative microscopes including scanning electron microscopy and transmission electron 
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microscopy hardly capture the moving interface, and lack the ability to quantify the out-of-plane deformation gradient directly. In our 
experiment, the distortion can be captured by continuously tracing a specific surface location while the phase front passing through. 
From Fig. 12, the deformation gradient at time tB = 13.25sec corresponds to the interface between austenite and martensite, which is 
evaluated as 

S(tB) =
∂xi(tB)

∂XI
=

⎡

⎣
0.97206 − 0.00611
− 0.00843 1.04262
0.01234 0.03439

⎤

⎦. (19)  

The relative distortions between interface and austenite/martensite is ϵA = S(tB) − 〈S〉A = 0.0473and ϵM = S(tB) − 〈S〉M =

0.01838respectively. 
In summary, this paper conclusively introduces a new experimental mechanics characterization method: dual beam-shear dif-

ferential interference microscopy. The underlying principle is to precisely quantify the local differential variations of surface by the 
pair of spatially sheared light beams with orthogonal transverse polarizations. In order to characterize the full-field deformation 
gradient tensor, we design an optical microscopy, named DInM, that can capture the two dimensional surface differential variations 
(x3,1, x3,2) sequentially during the homogeneous deformation process. We justified the mathematical models and corresponding 
calibrations for all optical parts. Finally, we use our first prototype to successfully characterize the mechanical behaviors of 1) the 
buckling of Si microribbon and 2) the tensile induced martensitic phase transformation in the Nickel – Titanium alloy. 
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Appendix A. Derivation of dual beam-shear function 

This section provides the detailed derivation for the dual beam-shear function of DInC that is implemented by two liquid crystal 
linear retarders. The incident light is assumed to be coherent with the linear polarization. The electric field in the liquid crystal medium 
should satisfy the Helmholtz wave equation 

(
∇2 + μϵ

)
E = 0, (A.1)  

where μ ∈ Ris the permeability and ϵ ∈ R2is the permittivity tensor. Here we assume that the liquid crystal medium is isotropic in 
magnetization but anisotropic in polarization. 

For LC1, the fast and slow axes are aligned with x1 and x2 directions, 

ϵLC1 =

[
ϵ1 0
0 ϵ2

]

, (A.2)  

where ϵ1 and ϵ2 are relative permittivity corresponding to the axes x1 and x2, respectively. For LC2, the fast and slow axes are oriented 
45∘ counterclockwise from x1, x2 directions, 

ϵLC2 =
1
2

[
ϵ1 + ϵ2 ϵ1 − ϵ2
ϵ1 − ϵ2 ϵ1 + ϵ2

]

. (A.3)  

Substituting the permittivity tensors given by (A.2) and (A.3) into equation (A.1) respectively, we get the transverse wave functions 

E(x3) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
A1eik1x3

A2eik2x3

]

e− iωt in LC1,

⎡

⎣
A′

1eik1x3 + A′

2eik2x3

A
′

1eik1x3 − A
′

2eik2x3

⎤

⎦e− iωt in LC2,

(A.4)  

where the wavenumbers k1 = k
̅̅̅̅̅̅̅̅̅̅̅̅
ϵ1/ϵ0

√
and k2 = k

̅̅̅̅̅̅̅̅̅̅̅̅
ϵ2/ϵ0

√
with k1 > k2. The constants A1, A2, A

′

1and A′

2are determined by the boundary 
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conditions. At the boundary between the vacuum and LC1, x3 = x*
3,

E
(
x*

3

)
=

[
E1
E2

]

ei(kx*
3 − ωt) forE1,E2 ∈ R, (A.5)  

with the vacuum wavenumber k = 2π
λ along x3 direction, and ω = k/ ̅̅̅̅̅̅̅μϵ0

√ where ϵ0 is the vacuum permittivity constant. This gives the 
constants A1 = E1ei(k− k1)x*

3 and A2 = E2ei(k− k2)x*
3 . After the light travels through LC1 with thickness ℓ, at x3 = x*

3 + ℓ,

E(x* +ℓ) =
[

E1ei(k1ℓ+kx*
3)

E2ei(k2ℓ+kx*
3)

]

e− iωt =

[
E1ei(k1ℓ+kx*

3)

E2ei(k1ℓ+kx*
3 − ϕLC)

]

e− iωt. (A.6)  

The phase of the slow axis falls behind relative to that of the fast axis by ϕLC = (k1 − k2)ℓ. The quantity ϕLC ∈ [0,2π)is defined as the 
retardance of the liquid crystal retarder depending on the crystal anisotropy, which can be precisely tuned by applying the DC voltage 
in a timely manner, usually less than 20ms. This is calibrated experimentally in next section (Fig. 6). Since then, the electric field 
follows the vacuum propagation as 

E(x3) =

[
E′

1

E
′

2

]

ei(kx3 − ωt), (A.7)  

where E′

1 = A1and E′

2 = A2are the complex conjugates of the constants A1 and A2 with |E′

1| = E1and |E′

2| = E2. When the polarized 
light passes the first Nomarski prism, the polarization along x2axis is sheared by s1 = s̅̅

2
√ ( − 1,1)corresponding to the dashed red arrow 

depicted in Fig. 3 (c). After the Prism 1, the sheared beams reach the liquid crystal retarder LC2 at x3 = x**
3 ,by continuity, the constants 

A′

1and A′

2of the electric field in LC2 can be determined as A′

1 = 1
2 (E

′

1 + E′

2)ei(k− k1)x**
3 and A′

2 = 1
2 (E

′

1 − E′

2)ei(k− k2)x**
3 . 

We set the retardance ϕLCof LC2 in two modes: ϕLC = 0for beam-shear 1 (BS1) and ϕLC = πfor beam-shear 2 (BS2). For BS1, ϕLC =

0implies no retardance between two crystal axes, i.e. k1 = k2. At x3 = x**
3 + ℓ,

E|ϕLC=0 =

[
A′

1 + A′

2

A′

1 − A′

2

]

ei[k1(x**
3 +ℓ)− ωt] = eik1ℓ

(

ℰ1
(
x**

3 , t
)
[

1
1

]

+ℰ2
(
x**

3 , t
)
[

1
− 1

])

, (A.8)  

where ℰ1(x**
3 ,t) = A′

1ei(k1x**
3 − ωt)and ℰ2(x**

3 , t) = A′

2ei(k2x**
3 − ωt). It implies that the outgoing field remains the magnitudes of polarizations 

in x1, x2axes corresponding to the left diagram of Fig. 3 (c). For BS2, ϕLC = πgives eik1ℓ = − eik2ℓ. At x3 = x**
3 + ℓ,the electric field in 

BS2 can be calculated as 

E|ϕLC=π = eik1ℓ
(

ℰ1
(
x**

3 , t
)
[

1
1

]

+ℰ2
(
x**

3 , t
)
[
− 1
1

])

. (A.9)  

Comparing to (A.8), the field given by the beam-shear mode 2 swaps the polarization axes between x1 and x2 corresponding to the right 
diagram in Fig. 3 (c). Then the light beams transverse the Prism 2, which is aligned orthogonally to Prism 1. The polarization in x2 axis 
is sheared by s2 = s̃̅̅

2
√ (1,1). Since the polarization component in x2has been swapped between the two beam-shear modes by LC2, the 

relative beam positions after the Prism 2 will be different as shown in the last row of Fig. 3(c). The Prism 1 and 2 are identical based on 
their commercial specifications (manufactured by United Crystals Inc.), the magnitude of the shear distance ̃s ≈ s. In order to precisely 
determine the parameters s1and s2, we use the nanometer localization analysis and the direct method (Chiu et al., 2019). The results 
are discussed in Section 4. 

Supplementary material 

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.jmps.2020.104162 
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